Transcatheter Intracardiac Shunt Device Provides Sustained Clinical Benefit at One Year in Heart Failure with Preserved or Mildly Reduced Ejection Fraction: The REDUCE LAP Heart Failure Trial

ALAA GABI, MD
PGY-5
Disclosures

None
Authors

- David M. Kaye, MD, PhD, Gerd Hasenfuß, MD, Petr Neuzil, MD, Martijn C. Post, MD, Robert Doughty, MD, Jean-Noël Trochu, MD, PhD, Adam Kolodziej, MD, Ralf Westenfeld, MD, Martin Penicka, MD, Mark Rosenberg, MD, PhD, Antony Walton, MD, David Muller, MD, Darren Walters, MD, Jörg Hausleiter, MD, Philip Raake, MD, Mark C. Petrie, MD, Martin Bergmann, MD, PhD, Guillaume Jondeau, MD, Ted Feldman, MD, Dirk J. van Veldhuisen, MD, Piotr Ponikowski, MD, PhD, Frank E. Silvestry, MD, Dan Burkhoff, MD, PhD and Christopher Hayward, MD

- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (D.M.K., A.W.); Georg-August Universität, Gottingen, Germany (G.H.); Na Homolce Hospital, Prague, Czech Republic (P.N.); St Antonius Ziekenhuis, Nieuwegein, The Netherlands (M.C.P.); University of Auckland, New Zealand (R.D.); CHU de Nantes, France (J.-N.T.); Fourth Military Hospital, Wroclaw, Poland (A.K.); Universität Klinikum Dusseldorf, Germany (R.W.); Cardiovascular Center Aalst, Belgium (M.P.); University Medical Center Schleswig-Holstein, Kiel, Germany (M.R.); Department of Cardiology, St Vincent’s Hospital, Sydney, New South Wales, Australia (D.M., C.H.); Department of Cardiology, Prince Charles Hospital, Brisbane, Queensland, Australia (D.W.); Klinikum Großhadern, Munich, Germany (J.H.); Internal Medicine, University of Heidelberg, Germany (P.R.); Golden Jubilee Hospital, Glasgow, Great Britain (M.C.P.); Cardiologicum Hamburg, Germany (M.B.); Bichat Hospital, INSERM, Paris, France (G.J.); Northshore University Health System, Evanston, IL (T.F.); University Medical Centre, Groningen, Netherlands (D.J.v.V.); Wroclaw Medical University, Czech Republic (P.P.); Hospital of the University of Pennsylvania, Philadelphia (F.E.S.); and Columbia University, New York, NY (D.B.).
Introduction

Heart failure with preserved ejection fraction (HFPEF) has a complex pathophysiology and remains a therapeutic challenge.

Elevated left atrial pressure, especially during exercise, is a near-universal finding in patients with HFPEF.

Increased LV passive stiffness
Reduced active LV relaxation
Reduced LA compliance
The magnitude of the exercise-mediated rise in PCWP in HFPEF is related to both symptoms and outcome.

SYMPTOMS

![Graph showing correlation between six minute walk (meters) and workload corrected PCWP (mmHg/W/kg)].

- \(r = -0.47 \)
- \(p < 0.001 \)

SURVIVAL

![Graph showing survival analysis with different PCWP categories].

- Work corrected PCWP < 25.5 mmHg/W/kg
- Work corrected PCWP > 25.5 mmHg/W/kg

- \(p = 0.03 \)

REDUCE LAP-HF Unpublished data

Dorfs EHJ 2014
Computer simulation demonstrated that an 8mm interatrial shunt device (IASD®) would provide acute LA decompression during exercise.

Kaye et al JCardFail 2014
InterAtrial Shunt Device - Mode of Action

Elevated LV filling pressures (Elevated LAP)

Pulmonary Venous hypertension

Pulmonary Congestion & Dyspnea (rest/exercise)

Transcatheter interatrial shunt device
Inclusion Criteria (n=64):

- Open label
- LVEF ≥ 40%
- NYHA class II-IV
- Elevated PCWP
 - ≥ 15 mmHg (rest) or
 - ≥ 25 (supine bicycle exercise)

6 month outcomes:

- NYHA Class
 - No. of patients
 - Baseline: [Chart]
 - Follow-up: [Chart]
 - p < 0.001

- MLWHF
 - Score
 - Baseline: [Chart]
 - Follow-up: [Chart]
 - p < 0.001

- 6 MWT
 - Metres
 - Baseline: [Chart]
 - Follow-up: [Chart]
 - p = 0.003

- Exercise time
 - Minutes
 - Baseline: [Chart]
 - Follow-up: [Chart]
 - p = 0.03

& reduced exercise PCWP

Objective & Methods

To assess **device safety** (major adverse cardiac, cerebrovascular and systemic embolic events -MACCE), and **device performance** one year post implant.

- **device performance: shunting (echocardiography)**

To evaluate **persistence of clinical benefit:**

- clinical efficacy: NYHA class, quality of life (MLWHFQ), 6MW distance
- cardiac structure and function (echocardiography)
- rest and exercise hemodynamics (**optional sub-study**, n=18)
 - oximetry to assess Qp:Qs (n=13)

Study monitored by independent CEC and DSMB
Baseline Characteristics (n=64)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Y)</td>
<td>69±8</td>
</tr>
<tr>
<td>Gender (% Female/Male)</td>
<td>66 / 34</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>47 ± 7</td>
</tr>
<tr>
<td>NYHA Class (n, II/III/IV)</td>
<td>18/46/0</td>
</tr>
<tr>
<td>Minnesota Living with HF Score</td>
<td>49 ± 20</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>33 ± 6</td>
</tr>
<tr>
<td>Permanent AF (%)</td>
<td>36</td>
</tr>
<tr>
<td>NT-Pro BNP (median, IQR pg./ml)</td>
<td>377 (222-925)</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>81</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>33</td>
</tr>
<tr>
<td>Coronary artery disease (%)</td>
<td>36</td>
</tr>
<tr>
<td>Diuretics at baseline (%)</td>
<td>91</td>
</tr>
<tr>
<td>Resting CVP (mm Hg)</td>
<td>9 ± 4</td>
</tr>
<tr>
<td>Resting PCWP (mm Hg)</td>
<td>17 ± 5</td>
</tr>
</tbody>
</table>
Safety (MACCE) and Device Performance

<table>
<thead>
<tr>
<th>MACCE event</th>
<th>Six months %</th>
<th>One year %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0</td>
<td>4.7 (3/64)</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>1.5 (1/64)* (pt died)</td>
</tr>
<tr>
<td>MI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Systemic embolic event</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Implant removal</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>Six months %</th>
<th>One year %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L→ R Shunt flow (Echo)</td>
<td>100 (49/49)</td>
<td>100 (48/48)</td>
</tr>
<tr>
<td>R→ L Shunt flow (Echo)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Qp:Qs</td>
<td>1.27 ± 0.24</td>
<td>1.28 ± 0.25</td>
</tr>
</tbody>
</table>

Device patency confirmed in 54 subjects (by echo or oximetry)
Sustained Clinical Efficacy

Patients with data at all 3 time points.

p<0.01, *p<0.001 vs baseline

Mean Δ at 1 year: 15 points

Mean Δ at 1 year: 33m

p<0.01, *p<0.001 vs baseline
Echocardiographic Results

- **LVEF**
 - Baseline 6M 12M
 - **No change in atrial volumes**

- **RVEF**
 - Baseline 6M 12M
 - *p<0.05, **p<0.01, ***p<0.001

- **LVEDVI**
 - Baseline 6M 12M
 - **No change in atrial volumes**

- **RVEDVI**
 - Baseline 6M 12M
 - **No change in atrial volumes**

Note: *p<0.05, **p<0.01, ***p<0.001
Invasive Hemodynamic Results (rest)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Six months</th>
<th>One year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA pressure</td>
<td>8 ± 3</td>
<td>11 ± 6</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>PA$_{\text{mean}}$ pressure</td>
<td>25 ± 8</td>
<td>23 ± 7</td>
<td>26 ± 8</td>
</tr>
<tr>
<td>Wedge pressure</td>
<td>19 ± 6</td>
<td>16 ± 8</td>
<td>17 ± 6</td>
</tr>
<tr>
<td>Cardiac output</td>
<td>5.2 ± 1.3</td>
<td>6.3 ± 1.4**</td>
<td>6.7 ± 1.8**</td>
</tr>
</tbody>
</table>

Patients with data at all 3 time points.

** p<0.01 vs baseline
Exercise Hemodynamic Results

Exercise time

- Baseline
- 6M
- 12M

PCWP

- Baseline
- 6M
- 12M

Workload

- Baseline
- 6M
- 12M

Cardiac Output

- Baseline
- 6M
- 12M

* p<0.05, ** p<0.01 vs baseline
Exercise Hemodynamic Results

IASD therapy provides increased work capacity for a given LA pressure.

*p < 0.05, **p < 0.01 vs baseline
Summary and Conclusions

Implantation of an interatrial shunt device appears to be safe with an acceptable MACCE rate through one year of follow-up.

Interatrial shunt device patency was maintained through one year.

The clinical and hemodynamic benefit observed 6 months after implant was sustained through one year, with no evidence of adverse sequelae:
- Meaningful improvements in NHYA class, exercise capacity and QOL
- Clinically meaningful reduction in normalized PCWP

Randomised trials are required and ongoing to determine the value of this novel strategy for the management of HFPEF.